Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
SAGE Open Med Case Rep ; 12: 2050313X241229586, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38313040

RESUMO

The objective of this case report is to present the use of tenting screw bone augmentation technique for the rehabilitation of narrow horizontally deficient mandibular ridges and to evaluate the feasibility and outcomes of this approach in achieving sufficient bone volume for successful implant placement and Osseointegration. A 34-year-old woman with no significant medical history presented with bilaterally missing teeth in the lower arch. A comprehensive treatment plan was developed through assessment and Cone Beam Computed Tomography (CBCT) imaging to evaluate the ridge dimensions and plan the treatment accordingly accurately. The tenting screw technique, utilizing autogenous/autologous+allograft materials, was chosen for horizontal ridge augmentation. Bone augmentations were performed simultaneously bilaterally using tenting screws. After a 20-week healing period, CBCT scans revealed favorable bone regeneration with adequate width for successful implant placements. This case report demonstrates the potential of tenting screw bone augmentation in effectively rehabilitating mandibular ridges and achieving optimal dental implant outcomes. Further research is needed to validate these findings and assess the long-term stability and success of this technique.

2.
Heliyon ; 9(9): e20007, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37809450

RESUMO

Dual-core yarns, containing two filaments within the core of the yarn, have gained increasing commercial and research interest recently, especially in denim manufacturing. The use of multi-components in dual-core yarns allows for tailoring the properties of the yarn and denim fabric. The type of filaments and fibers and their surface characteristics play a role in fiber-to-fiber cohesion within yarn structure. However, little has been reported regarding the effect of different filaments on the properties of dual-core yarns. The objective of this study was to investigate the effect of three different filaments, T400, polyester flat (PET flat) and polyester textured (PET textured) as well as two yarn structures, siro versus non-siro, on tensile, elastic and other properties of dual-core yarns at same twist level and linear density of the yarn. The results showed that the siro spun dual-core yarn containing T400 exhibited 25% higher tenacity compared with yarns containing other filaments. However, the plastic deformation of the yarn containing PET flat filament, having a higher initial modulus, was at a relatively lower level compared with T400 and PET textured. Overall, the siro yarn structure showed lower imperfections and higher tenacity compared with the non-siro yarn structure. The dual-core yarn containing T400 showed a higher level of moisture wicking compared with other filaments which can add to the comfort properties but a similar hairiness level. The findings of this study suggest that the use of a filament with a higher initial modulus can improve the stretch and recovery behavior of the dual-core yarns.

3.
Pharmaceuticals (Basel) ; 16(6)2023 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-37375754

RESUMO

One homoleptic (1) and three heteroleptic (2-4) palladium(II) complexes were synthesized and characterized by various physicochemical techniques, i.e., elemental analysis, FTIR, Raman spectroscopy, 1H, 13C, and 31P NMR. Compound 1 was also confirmed by single crystal XRD, showing a slightly distorted square planar geometry. The antibacterial results obtained via the agar-well diffusion method for compound 1 were maximum among the screen compounds. All the compounds have shown good to significant antibacterial results against the tested bacterial strains, Escherichia coli, Klebsiella pneumonia, and Staphylococcus aureus, except 2 against Klebsiella pneumonia. Similarly, the molecular docking study of compound 3 has shown the best affinity with binding energy scores of -8.6569, -6.5716, and -7.6966 kcal/mol against Escherichia coli, Klebsiella pneumonia, and Staphylococcus aureus, respectively. Compound 2 has exhibited the highest activity (3.67 µM), followed by compound 3 (4.57 µM), 1 (6.94 µM), and 4 (21.7 µM) against the DU145 human prostate cancer cell line using the sulforhodamine B (SRB) method as compared to cisplatin (>200 µM). The highest docking score was obtained for compounds 2 (-7.5148 kcal/mol) and 3 (-7.0343 kcal/mol). Compound 2 shows that the Cl atom of the compound acts as a chain side acceptor for the DR5 receptor residue Asp B218 and the pyridine ring is involved in interaction with the Tyr A50 residue via arene-H, while Compound 3 interacts with the Asp B218 residue via the Cl atom. The physicochemical parameters determined by the SwissADME webserver revealed that no blood-brain barrier (BBB) permeation is predicted for all four compounds, while gastrointestinal absorption is low for compound 1 and high for the rest of the compounds (2-4). As concluding remarks based on the obtained in vitro biological results, the evaluated compounds after in vivo studies might be a good choice for future antibiotics and anticancer agents.

4.
Bioinorg Chem Appl ; 2022: 2694487, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35340420

RESUMO

The carbonaceous adsorbents, an activated carbon (AC) and a bioinorganic nanocomposite (MAC), were prepared using Dalbergia sissoo sawdust as waste biomass, in this study. Both the adsorbents were characterized by FTIR, EDX, SEM, XRD, TG/DTA, surface area, and a pore size analyzer. The adsorbents were used for the removal of an antibiotic, doxycycline (DC) antibiotic, from wastewater in order to minimize a load of antibiotics in industrial effluents and consequently the drug resistance problem. Initially, the effectiveness of adsorbent was confirmed using batch adsorption experiments where isothermal models like Langmuir, Freundlich Temkin, Jovanovic, and Harkins-Jura were utilized to govern the maximum adsorption capacity of AC and MAC while pseudo-first- and second-order kinetic models were used to estimate the values of different kinetic parameters. Langmuir model best accommodated the equilibrium data whereas the pseudo-second-order kinetic model finest trimmed the kinetics data. The effect of pH on adsorption was also evaluated where maximum removal was observed between pH 5 and 7 by both adsorbents. The effect of temperature on adsorption was evaluated where the entropy change (ΔS 0) comes out to have a numerically positive value whereas Gibbs free energy change (ΔG 0) and enthalpy change (ΔH 0) were negative indicating the spontaneous nature and feasibility of the procedure. The robust technology of membrane separation is rapidly replacing the conventional technologies but at the same time suffers from the problem of membrane fouling. As pretreatment, the AC and MAC were used in hybrid with ultrafiltration (UF), nanofiltration (NF), and reverse osmosis (RO) membranes whereas permeate fluxes and percent retention of DC were compared for naked membrane operations and AC/membrane and MAC/membrane process. The permeate fluxes for MAC/membrane processes were greater as compared to AC/membrane and naked membrane processes showing the effectiveness of the bioinorganic composite as foul control and consequently recovery of DC from effluents. The percent retention of the UF membrane was lower as compared to NF and RO membranes. Improvement in percent retention for UF/AC, UF/MAC, NF/AC, NF/MAC, RO/AC, and RO/MAC was observed. The bioinorganic composite MAC contains a magnetic iron oxide which was effectively removed from slurry after use through the magnetic process and that was the main reason for high permeate fluxes in MAC/membrane operations.

5.
J Glob Antimicrob Resist ; 27: 142-149, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34517141

RESUMO

Plasmodium falciparum, the causative agent of malaria, has been developing resistance to several drugs worldwide for more than five decades. Initially, resistance was against drugs such as chloroquine, pyrimethamine, sulfadoxine, mefloquine and quinine. Research studies are now reporting parasites with resistance to the most effective and novel drug used against malaria infection worldwide, namely artemisinin. For this reason, the first-line treatment strategy of artemisinin-based combination therapy is becoming unsuccessful in areas where drug resistance is highly prevalent. The increase in artemisinin-resistant P. falciparum strains has threatened international efforts to eliminate malarial infections and to reduce the disease burden. Detection of several phenotypes that display artemisinin resistance, specification of basic genetic factors, the discovery of molecular pathways, and evaluation of its clinical outcome are possible by the current series of research on genomics and transcriptomic levels in Asia and Africa. In artemisinin resistance, slow parasite clearance among malaria-infected patients and enhanced in vitro survival of parasites occurs at the early ring stage. This resistance is due to single nucleotide polymorphisms within the Kelch 13 gene of the parasite and is related to significantly upregulated resistance signalling pathways; thus, the pro-oxidant action of artemisinins can be antagonised. New strategies are required to halt the spread of artemisinin-resistant malarial parasites.


Assuntos
Antimaláricos , Artemisininas , Resistência a Medicamentos , Malária Falciparum , Antimaláricos/farmacologia , Artemisininas/farmacologia , Humanos , Malária Falciparum/tratamento farmacológico , Proteínas de Protozoários
6.
Front Chem ; 9: 711190, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34976944

RESUMO

A new bisbenzylisoquinoline named as chondrofolinol (1) and four reported compounds (2-5) were isolated and characterized from the roots of Berberis glaucocarpa Stapf. Anti-inflammatory, anti-pyretic, and leishmanicidal studies were performed against carrageenan-induced paw edema, yeast-induced pyrexia, and the promastigotes of Leishmania tropica, respectively. The new compound significantly reduced the paw volume in carrageenan-induced paw edema and rectal temperature in yeast-induced pyrexia at 10 and 20 mg/ kg of body weight. Chondrofolinol caused almost 100% inhibition of the promastigotes of Leishmania tropica. All the compounds displayed minimal cytotoxicity against THP-1 monocytic cells. In order to ascertain the potential macromolecular targets of chondrofolinol responsible for the observed anti-inflammatory and anti-leishmanial activities, a molecular docking study was carried out on relevant protein targets of inflammation and Leishmania. Protein targets of human endoplasmic reticulum aminopeptidase 2 (ERAP2) and human matrix metalloproteinase-1 (MMP-1) for inflammation and protein targets of N-myristoyltransferase (NMT), tyrosyl-tRNA synthetase (TyrRS), and uridine diphosphate-glucose pyrophosphorylase (UGPase) for Leishmania major were selected after thorough literature search about protein targets responsible for inflammation and Leishmania major. Chondrofolinol showed excellent docking to ERAP2 and to MMP-1. The Leishmania major protein targets with the most favorable docking scores to chondrofolinol were NMT, TyrRS, and UGPase. The study indicated that bisbenzylisoquinoline and isoquinoline alkaloids possess anti-pyretic, anti-inflammatory, and anti-leishmanial properties with minimal cytotoxicity and therefore, need to be further explored for their therapeutic potential.

7.
Bioorg Chem ; 98: 103727, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32179285

RESUMO

Organic selenium compounds are widely associated with numerous pharmacological properties. However, selenium compounds, such as Ebselen (Ebs) and Diphenyl Diselenide (DPDS), could interact with mitochondrial respiratory complexes, especially with thiol groups. The present study evaluated whether the insertion of functional groups, o-methoxy, and p-methyl on organic selenium compounds promotes changes in mitochondrial functioning parameters and whether this is related to antibacterial activity. Here we tested some in vitro parameters after the exposure of mitochondria to different concentrations of ß-selenoamines 1-phenyl-3-(p-tolylselanyl)propan-2-amine (C1) and 1-(2-methoxyphenylselanyl)-3-phenylpropan-2-amine (C2) and analogs of DPDS 1,2-bis(2-methoxyphenyl)diselenide (C3) and 1,2-bisp-tolyldiselenide (C4). We also evaluated the antibacterial activity of ß-selenoamines and diselenides against Methicillin-resistant Staphylococcus aureus and Escherichia coli. Our results showed that o-methoxy insertion increased the antioxidant properties, without affecting the mitochondrial membrane potential. The compounds with a p-methyl insertion affected the mitochondrial membrane potential and significantly decreased the State III respiration and RCR. Besides, the p-methyl compounds presented antibacterial activity at lower concentrations than those shown in o-methoxy, precisely by the same mechanism that promotes damage to thiol groups and better absorption in gram-positive bacteria due to their relationship with cell wall constituents. Finally, our study confirms that structural modifications in organic selenium compounds provide changes in mitochondrial functioning but also raise their antibacterial effect. This strategy can be used as a target for the development of new enough potent antibacterial to restrict the advance of resistant bacterial infections.


Assuntos
Antibacterianos/farmacologia , Escherichia coli/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Mitocôndrias Hepáticas/efeitos dos fármacos , Compostos Organosselênicos/farmacologia , Animais , Antibacterianos/síntese química , Antibacterianos/química , Relação Dose-Resposta a Droga , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Compostos Organosselênicos/síntese química , Compostos Organosselênicos/química , Ratos , Ratos Wistar , Relação Estrutura-Atividade
8.
Int J Nanomedicine ; 14: 5087-5107, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31371949

RESUMO

Background: Nanotechnology explores a variety of promising approaches in the area of material sciences on a molecular level, and silver nanoparticles (AgNPs) are of leading interest in the present scenario. This review is a comprehensive contribution in the field of green synthesis, characterization, and biological activities of AgNPs using different biological sources. Methods: Biosynthesis of AgNPs can be accomplished by physical, chemical, and green synthesis; however, synthesis via biological precursors has shown remarkable outcomes. In available reported data, these entities are used as reducing agents where the synthesized NPs are characterized by ultraviolet-visible and Fourier-transform infrared spectra and X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. Results: Modulation of metals to a nanoscale drastically changes their chemical, physical, and optical properties, and is exploited further via antibacterial, antifungal, anticancer, antioxidant, and cardioprotective activities. Results showed excellent growth inhibition of the microorganism. Conclusion: Novel outcomes of green synthesis in the field of nanotechnology are appreciable where the synthesis and design of NPs have proven potential outcomes in diverse fields. The study of green synthesis can be extended to conduct the in silco and in vitro research to confirm these findings.


Assuntos
Química Verde/métodos , Nanopartículas Metálicas/química , Nanotecnologia/métodos , Prata/química , Antibacterianos/farmacologia , Materiais Biocompatíveis/farmacologia
9.
Environ Sci Pollut Res Int ; 26(14): 14339-14349, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30868463

RESUMO

Thermodynamic and kinetic aspects for the biosorptive removal of Pb, Cd, and Cr metals from water using Chemically Modified Leaves of Salvia moorcroftiana (CMSML) were determined. Different parameters including pH, temperature, metal's initial concentration, biomass dosage, and contact time were optimized. Optimum biosorptions of Pb, Cd, and Cr were attained at pH values of 6.0, 7.0, and 3.0 respectively. Batch experiments showed maximum removal of both Pb and Cd at 40 °C and that of Cr at 30 °C. Biosorption capability of CMSML was observed to decrease with raising temperature. Optimal equilibrium times for Pb, Cd, and Cr uptake were 120, 60, and 120 min respectively. Based on the values of regression correlation coefficients (R2), the current data is explained better by applying Langmuir isotherms than the Freundlich model. Maximum biosorbent capabilities (qmax) for Pb, Cd, and Cr were approximately 270.27, 100.00, and 93.45 mg/g respectively. Thermodynamically, removal of all the three metal ions was shown to be exothermic and spontaneous.


Assuntos
Cádmio/análise , Cromo/análise , Chumbo/análise , Folhas de Planta/crescimento & desenvolvimento , Salvia/crescimento & desenvolvimento , Poluentes Químicos da Água/análise , Adsorção , Biodegradação Ambiental , Biomassa , Concentração de Íons de Hidrogênio , Cinética , Modelos Teóricos , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Salvia/efeitos dos fármacos , Salvia/metabolismo , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA